無窮小和無窮大的關系

在自變量的同一變化過程中,無窮大與無窮小具有倒數關系,即當x→a時,f(x)為無窮大,則1/f(x)為無窮??;反之,f(x)為無窮小,且f(x)在a的某一去心鄰域內恒不為0時,1/f(x)才為無窮大。

無窮小量是數學分析中的一個概念,在經典的微積分或數學分析中,無窮小量通常以函數、序列等形式出現。無窮小量即以數0為極限的變量,無限接近于0。確切地說,當自變量x無限接近x0(或x的絕對值無限增大)時,函數值f(x)與0無限接近,即f(x)→0(或f(x)=0),則稱f(x)為當x→x0(或x→∞)時的無窮小量。特別要指出的是,切不可把很小的數與無窮小量混為一談。

無窮大的倒數等于無窮小,無窮小的倒數(當其不等于0時,因為此時倒數才有意義,而無窮小量是可能取0的)是無窮大量。無窮大就是在自變量的某個變化過程中絕對值無限增大的變量或函數。無窮大與無窮小具有倒數關系,即當x→a是f(x)為無窮大,則1/f(x)為無窮小。無窮大為數學符號,是一種變量,記作∞。

免責聲明:本文僅代表文章作者的個人觀點,與本站無關。其原創性、真實性以及文中陳述文字和內容未經本站證實,對本文以及其中全部或者部分內容文字的真實性、完整性和原創性本站不作任何保證或承諾,請讀者僅作參考,并自行核實相關內容。

http://image95.pinlue.com/image/21.jpg
分享
評論
首頁
亚洲国内精品自在自线_亚洲国产在线2020最新_亚洲精品第一国产综合 <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>